91 research outputs found

    Spatiotemporal Propagation Learning for Network-Wide Flight Delay Prediction

    Full text link
    Demystifying the delay propagation mechanisms among multiple airports is fundamental to precise and interpretable delay prediction, which is crucial during decision-making for all aviation industry stakeholders. The principal challenge lies in effectively leveraging the spatiotemporal dependencies and exogenous factors related to the delay propagation. However, previous works only consider limited spatiotemporal patterns with few factors. To promote more comprehensive propagation modeling for delay prediction, we propose SpatioTemporal Propagation Network (STPN), a space-time separable graph convolutional network, which is novel in spatiotemporal dependency capturing. From the aspect of spatial relation modeling, we propose a multi-graph convolution model considering both geographic proximity and airline schedule. From the aspect of temporal dependency capturing, we propose a multi-head self-attentional mechanism that can be learned end-to-end and explicitly reason multiple kinds of temporal dependency of delay time series. We show that the joint spatial and temporal learning models yield a sum of the Kronecker product, which factors the spatiotemporal dependence into the sum of several spatial and temporal adjacency matrices. By this means, STPN allows cross-talk of spatial and temporal factors for modeling delay propagation. Furthermore, a squeeze and excitation module is added to each layer of STPN to boost meaningful spatiotemporal features. To this end, we apply STPN to multi-step ahead arrival and departure delay prediction in large-scale airport networks. To validate the effectiveness of our model, we experiment with two real-world delay datasets, including U.S and China flight delays; and we show that STPN outperforms state-of-the-art methods. In addition, counterfactuals produced by STPN show that it learns explainable delay propagation patterns.Comment: 14 pages,8 figure

    Inductive Graph Neural Networks for Spatiotemporal Kriging

    Full text link
    Time series forecasting and spatiotemporal kriging are the two most important tasks in spatiotemporal data analysis. Recent research on graph neural networks has made substantial progress in time series forecasting, while little attention has been paid to the kriging problem -- recovering signals for unsampled locations/sensors. Most existing scalable kriging methods (e.g., matrix/tensor completion) are transductive, and thus full retraining is required when we have a new sensor to interpolate. In this paper, we develop an Inductive Graph Neural Network Kriging (IGNNK) model to recover data for unsampled sensors on a network/graph structure. To generalize the effect of distance and reachability, we generate random subgraphs as samples and reconstruct the corresponding adjacency matrix for each sample. By reconstructing all signals on each sample subgraph, IGNNK can effectively learn the spatial message passing mechanism. Empirical results on several real-world spatiotemporal datasets demonstrate the effectiveness of our model. In addition, we also find that the learned model can be successfully transferred to the same type of kriging tasks on an unseen dataset. Our results show that: 1) GNN is an efficient and effective tool for spatial kriging; 2) inductive GNNs can be trained using dynamic adjacency matrices; 3) a trained model can be transferred to new graph structures and 4) IGNNK can be used to generate virtual sensors.Comment: AAAI 202

    March in Chat: Interactive Prompting for Remote Embodied Referring Expression

    Full text link
    Many Vision-and-Language Navigation (VLN) tasks have been proposed in recent years, from room-based to object-based and indoor to outdoor. The REVERIE (Remote Embodied Referring Expression) is interesting since it only provides high-level instructions to the agent, which are closer to human commands in practice. Nevertheless, this poses more challenges than other VLN tasks since it requires agents to infer a navigation plan only based on a short instruction. Large Language Models (LLMs) show great potential in robot action planning by providing proper prompts. Still, this strategy has not been explored under the REVERIE settings. There are several new challenges. For example, the LLM should be environment-aware so that the navigation plan can be adjusted based on the current visual observation. Moreover, the LLM planned actions should be adaptable to the much larger and more complex REVERIE environment. This paper proposes a March-in-Chat (MiC) model that can talk to the LLM on the fly and plan dynamically based on a newly proposed Room-and-Object Aware Scene Perceiver (ROASP). Our MiC model outperforms the previous state-of-the-art by large margins by SPL and RGSPL metrics on the REVERIE benchmark.Comment: Accepted by ICCV 202

    Spatial-temporal traffic modeling with a fusion graph reconstructed by tensor decomposition

    Full text link
    Accurate spatial-temporal traffic flow forecasting is essential for helping traffic managers to take control measures and drivers to choose the optimal travel routes. Recently, graph convolutional networks (GCNs) have been widely used in traffic flow prediction owing to their powerful ability to capture spatial-temporal dependencies. The design of the spatial-temporal graph adjacency matrix is a key to the success of GCNs, and it is still an open question. This paper proposes reconstructing the binary adjacency matrix via tensor decomposition, and a traffic flow forecasting method is proposed. First, we reformulate the spatial-temporal fusion graph adjacency matrix into a three-way adjacency tensor. Then, we reconstructed the adjacency tensor via Tucker decomposition, wherein more informative and global spatial-temporal dependencies are encoded. Finally, a Spatial-temporal Synchronous Graph Convolutional module for localized spatial-temporal correlations learning and a Dilated Convolution module for global correlations learning are assembled to aggregate and learn the comprehensive spatial-temporal dependencies of the road network. Experimental results on four open-access datasets demonstrate that the proposed model outperforms state-of-the-art approaches in terms of the prediction performance and computational cost.Comment: 11 pages, 8 figure

    Enhancing Representation Learning for Periodic Time Series with Floss: A Frequency Domain Regularization Approach

    Full text link
    Time series analysis is a fundamental task in various application domains, and deep learning approaches have demonstrated remarkable performance in this area. However, many real-world time series data exhibit significant periodic or quasi-periodic dynamics that are often not adequately captured by existing deep learning-based solutions. This results in an incomplete representation of the underlying dynamic behaviors of interest. To address this gap, we propose an unsupervised method called Floss that automatically regularizes learned representations in the frequency domain. The Floss method first automatically detects major periodicities from the time series. It then employs periodic shift and spectral density similarity measures to learn meaningful representations with periodic consistency. In addition, Floss can be easily incorporated into both supervised, semi-supervised, and unsupervised learning frameworks. We conduct extensive experiments on common time series classification, forecasting, and anomaly detection tasks to demonstrate the effectiveness of Floss. We incorporate Floss into several representative deep learning solutions to justify our design choices and demonstrate that it is capable of automatically discovering periodic dynamics and improving state-of-the-art deep learning models.Comment: 12 page

    Explainable and Safe Reinforcement Learning for Autonomous Air Mobility

    Full text link
    Increasing traffic demands, higher levels of automation, and communication enhancements provide novel design opportunities for future air traffic controllers (ATCs). This article presents a novel deep reinforcement learning (DRL) controller to aid conflict resolution for autonomous free flight. Although DRL has achieved important advancements in this field, the existing works pay little attention to the explainability and safety issues related to DRL controllers, particularly the safety under adversarial attacks. To address those two issues, we design a fully explainable DRL framework wherein we: 1) decompose the coupled Q value learning model into a safety-awareness and efficiency (reach the target) one; and 2) use information from surrounding intruders as inputs, eliminating the needs of central controllers. In our simulated experiments, we show that by decoupling the safety-awareness and efficiency, we can exceed performance on free flight control tasks while dramatically improving explainability on practical. In addition, the safety Q learning module provides rich information about the safety situation of environments. To study the safety under adversarial attacks, we additionally propose an adversarial attack strategy that can impose both safety-oriented and efficiency-oriented attacks. The adversarial aims to minimize safety/efficiency by only attacking the agent at a few time steps. In the experiments, our attack strategy increases as many collisions as the uniform attack (i.e., attacking at every time step) by only attacking the agent four times less often, which provide insights into the capabilities and restrictions of the DRL in future ATC designs. The source code is publicly available at https://github.com/WLeiiiii/Gym-ATC-Attack-Project
    • …
    corecore